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The method of linear combinations of generalized diatomic orbitals (LCGDO) is combined with 
the method of configuration interaction (CI). CI wave functions obtained in this way are finally sub- 
mitted to a natural spin orbital analysis; the resulting natural spin orbitals are expansions in terms of 
generalized diatomic orbitals. 

For the ground sta~e of H2, a one-determinantal-approach with a single completely optimized 
one-electron basis function nearly reproduces the Hartree-Fock-result. The two-determinantal 
approach with two optimized basis functions of type ag and a u nearly gives the optimized double 
configuration SCF result. 

Key words: Natural spin orbitals - Generalized diatomic orbitals - LCDO- and LCGDO- 
methods. 

A. Introduction 

Generalized diatomic orbitals (GDOs) are the exact solutions of the one- 
particle Schr~idinger equation 

2 r. rb r . .  r b X=  eX (i) 

A B 

belonging to negative energy eigenvalues e. The solutions of (1), which have been 
studied in three former papers [-1- 3], are chosen to be eigenfunctions of the z- 
component of angular momentum and will be denoted by 

X = (nl7s; Za, Zb, Q) (2) 

where n and l are united-atom quantum numbers, y is an irreducible represen- 
tation of C~ov (or Dora if Za = Zb), and s is the sign of the eigenvalue mh of the z-com- 
ponent of angular momentum. 

Attempts to construct approximate solutions of the SchriSdinger equation for 
diatomic molecules with several electrons in terms of antisymmetrized spin orbital 
products using orbitals of class (2) are very old. Hylleraas [4] suggested, for the 
ground and excited states of H2,  the use of the following approximations: 
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with 
, 1 1 

Z, = ',lscro," 1,1,0). ){2 = ]m3;(D~oh)," 2 '  2-' 0). (4) 

As ){1 is an H~-ground state function and ){2 a "demi"-H~ -function, this suggestion 
anticipates Mulliken's demi-H~- model [5]. 

Hylleraas, however, used highly truncated expansions for the "diatomic 
orbitals" ){1 and Z2 in his numerical calculations. These calculations were later 
improved by Wallis [6]. Cooley [7] finally performed complete configuration 
interaction calculations on H2, using up to 6 basis functions of the general type 

Za = Inklkyk(D~h) : Zk, Zk, 0) (5) 

each depending on a variational parameter Za and being an exact solution of (1). 
Optimizing also these nonlinear parameters Zk, he found: The use of a relatively 
few diatomic orbitals (5) whose symmetry );k(Dooh) permits the three major types of 
electron correlation gives approximately the same energy as the rank- and symme- 
try-equivalent truncated natural spin orbital expansion of very accurate H a wave 
functions. 

We were able to reproduce Cooley's results and concentrated on some ques- 
tions such as: 

i) How can the results for the one- and two-determinantal treatment of H2 
be improved which are inferior to the ones given by the LCAO-method? 

ii) Which basis is appropriate for the ground and excited states of Hel l+? 

iii) Can diatomic molecules with more than two electrons be treated success- 
fully? 

This paper outlines the methods applied in all cases. Besides it gives the answer 
to question i), thus especially illustrating the use of symmetry-adapted linear 
combinations of generalized diatomic orbitals as one-electron basis functions. 

B. Method of Linear Combinations of Generalized Diatomic Orbitals 

In case of molecular symmetry D~h, a symmetry-adapted linear combination 
of two generalized diatomic orbitals LCGDO is defined as the sum or difference 

Inl?(D~h) : Za' Zb' Q)  (6) 

= N+ {Inl?(C~v); Za, Z b, Q) +_ In17(C~) : Zb, Za, Q)} 

where N+ is a normalizing factor. Just as the generalized diatomic orbital (2), the 
linear combination (6) is a product of three functions depending on the spheroidal 
coordinates #, v, ~p respectively and behaves like a single basis function with regard 
to the computation of one- and two-electron-integrals. 

The well-known most simple LCAO-approximation 

110% "Z, 0, 0)  (7) 
= N {llOa : Z, O, O) + llO¢ ;O,Z, O)} 

for a %-type molecular orbital in H~- or H 2 evidently is a special case of (6). 
In case of molecular symmetry C ,  v, we start from a set of generalized diatomic 

orbitals (2) as basis functions. Combining orthogonalized basis functions of type 
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(2) or (6) with spin factors ~ and/3, a set of spin orbitals is generated. All linearly 
independent antisymmetrized products (Slater determinants) of these spin orbitals 
are then used within the frame of a full configuration interaction calculation. The 
final many-electron wave function obtained in this way is then submitted to a 
natural spin orbital analysis according to Lbwdin's proposal. The resulting 
natural spin orbitals are expansions in terms of generalized diatomic spin orbitals 
(2) or symmetry-adapted linear combinations of generalized diatomic spin 
orbitals (6). Evidently natural spin orbitals appear as linear combinations of 
generalized diatomic spin orbitals. They are classified according to theorems 
proved by Bingel and Kutzelnigg [9] which are generalizations of the Delbrtick- 
Roothaan-theorems [10] for Hartree-Fock-orbitals. All these operations are 
performed by means of two computer programs (CI ll(Coov) and CI 04 (D~h)) 
which also optimize non-linear parameters Za~, Zb~, Qk. 

Further details on the computational steps may be taken from [11]. Some 
details on the calculation of two-electron integrals between LCDOs are contained 
in the Appendix. 

C. Ground State of H 2 in Single Configuration Approximation 

Four types of single configuration calculations have been performed for 
various values of the internuclear distance R and will now be compared with the 
SCF results obtained by Kolos and Roothaan [12], especially for the internuclear 
distance R = 1.4a o (Fig. 2 and Table 1). 

I. In an MO-DO type of calculation, we used a single diatomic orbital 
~l= [1sag ;Z,Z,  0) [Eq. (5)1 and optimized its effective charge Z, reproducing 
Cooley's result [-7 3 for the special internuclear distance R = 1.4 a o. 

II. In an MO-LCAO type of calculation, a aa-type linear combination ~vii of 
two atomic is-functions centred at the two nuclei was used [Eq. (7)]; again the 
single parameter Z was optimized. 

Table 1. H 2 1 configuration a02 

I. MO-DO II. MO-LCAO III. MO-LCDO 

R Z = Z a = Z b ( Q = O )  - E t o  t Z(Q =0) -E to  t Z a Zb(Q=O ) - E , o  t 

0.6 0.808 0.72266 1.449 0.72455 1.364 0.132 0.72482 
0.8 0.797 0.97417 1.370 0.97560 1.253 0.211 0.97670 
1.0 0.789 1.07873 1.301 1.07993 1.187 0.243 1.08189 
1.4 0.779 1.12647 1.189 1.12819 1.103 0.264 1.13132 
1.5 0.777 1.12389 1.166 1.12591 1.088 0.265 1.12921 
2.0 0.778 1.08223 1.072 1.08631 1.025 0.264 1.08988 
2.6 0.795 1.01709 0.995 1.02355 0.971 0.262 1.02681 
3.2 0.821 0.95950 0.942 0.96698 0.934 0.264 0.96978 

IV. MO-LCGDO 

R = 1.4 Z. = 0.793 Z b = -0.196 Q = 0.513 - Eto t = 1.133 42 eZ/ao 

R = 1.4 a o SCF [12] -Etot = 1.133 63 e2/ao 
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Fig. I. Ground state of H 2 at equilibrium distance. A comparison of several single and double con- 
figuration model calculations 

III. In an MO-LCDO type of calculation, the molecular orbital o-0 was approxi- 
mated by a linear combination of two diatomic orbitals, the charges of which 
were exchanged according to Eq. (6): 

lPiii = [ls% ;Z. ,  Zb, 0> (8) 
The two parameters Z.  and Zb were optimized. 
IV. In an MO-LCGDO type of calculation, a linear combination of two gene- 
ralized diatomic orbitals was formed, the parameters Z.  and Zb of which being 
exchanged according to Eq. (6): 

W,v -- Ils~g ;Z, ,  Zb, Q> • (9) 

The three parameters Za, Zb, and Q were optimized. As the MO-LCDO method 
III (two variational parameters) contains methods I and II as special cases, it is 
superior to both of them (Fig. 1). The approximation lPlll (Eq. (8)) is able to reflect 
the polarization of the electron charge clouds centred at the protons. In an MO- 
LCAO-SCF treatment, atomic 2po-fUnctions centred at the protons would have 
to be included in the basis to achieve this polarization effect. 

The MO-LCGDO method IV is per definitionem (three parameters) superior 
to the MO-LCDO method. Nevertheless it is surprising how closely the SCF 
value obtained by Kolos and Roothaan [12] is approached (Fig. 1). 

If the distance R is varied, the order of the results given by the four methods 
remains the same (Table 1). This may also be taken from Fig. 2, in which the 
differences H - E s c  F of the four types of calculations - as compared with the self- 
consistent values Esc F - are shown for various values of R. 
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Fig. 2. Ground  state of H 2. Deviations of single configuration model calculations from Hartree-Fock 
results 

D. Ground State of H 2 in Double Configuration Approximation 

A double configuration approximation based on two configurations 0 .2 and 
2 takes left-right correlation into account and ensures correct dissociation into (9" u 

two is-hydrogen atoms when the internuclear distance R is increased. 
Four types of double configuration calculations have been performed for 

various values of the internuclear distance R and will now be compared with the 
optimized double configuration (ODC) result obtained by Das and Wahl [13], 
especially for R = 1.4 a o. (Fig. 1 and Table 2). 

I. In an MO-DO type of calculation, cg and cu were approximated by ls~g 
and 2 p a  u [-Eq. (5)], and the two effective nuclear charges for a o and cu were opti- 
mized. Cooley's result was again reproduced. 

II. In an MO-LCAO-double ~ type of calculation, ag and a u were approxi- 
mated by two functions of kind (7), and Zg (for ag) and Zu (for a,) were optimized. 
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2 cry, Table  2. H 2 2 conf igurat ions  Go, 

I. M O - D O  

R Z(lsG0) Z(2pcru) - E t o  t 

II. MO-LCAO-double ( 

z ( ~ )  z(~.) - ~o~ 

0.5 0.817 1.9t5 0.48770 
!.0 0.796 1.544 1.09167 
1.4 0.786 1.353 1.143 76 
1.5 0.790 1.314 1.142 44 
2.0 0.803 1.203 1.108 65 
3.0 0.877 1.059 1.03106 

1.495 1.314 0.48906 
1.308 1,249 1.093 71 
1.201 1.189 1.14778 
1.179 1.179 1.14719 
1.095 1.120 1.11773 
1.012 1.045 1.04710 

IIIa. MO-LCDO 2 par. 

R Z G Z b - Eto t 

IIIb. MO-LCDO 3 par. 

Crg 2 p G  

Za Zb Z -- Eto t 

0.5 1.476 0.027 0.488 84 
1.0 1.210 0.210 1.09515 
1.4 1.131 0.220 1.149 97 
1.5 1.117 0.218 1.14943 
2.0 1.062 0.200 1.119 70 
3.0 1.009 0.150 1.047 74 

1.469 0.039 1.923 0.490 18 
1.208 0.217 1.532 1.09571 
1.130 0.227 1.354 1.15031 
1.116 0.224 1.319 1.t4974 
1.062 0.204 1.183 1.11995 
1.007 0.148 1.048 1.04795 

IV. MO-LCGDO R = 1.4 a o 

ls%: Z, = 0.793 Zb= --0.196 Q=O.513(frozen) 
2 p G :  Z,,= 1.316 Z b= 1.371 (Q = 0) 

-Etot  = 1.151 68 e2/ao 
D as  and W a h l  [13]: - EOD c = 1.15175 

III. a) In a first MO-LCDO type of calculation, a o was approximated by the 
linear combination ~m [Eq. (8)]. G was approximated by a linear combination 
[10G; Zu, Zb, O) of the same diatomic orbitals [lso.; Za, Zb, 0) and ]lso.; Zb, Za, 
0), the two effective charges of which were optimized. 

This procedure is equivalent to using these two diatomic orbitals as a one- 
electron basis for a full configuration interaction. 

b) In a second MO-LCDO type of calculation, o.o was approximated by tpn I 
[Eq. (8)]. o., was approximated by an H~-type diatomic orbital 2pG [Eq. (5)]. 
The three effective charges Za, Zb(%) and Z(G) were optimized. 

IV. Finally, in an M O - L C G D O  type of calculation, % was approximated by 
tpw [Eq. (9)], determined in the one-configuration approximation and frozen. 
o., was approximated by 121o-,; Z,, Tb, 0)  [Eq. (6)]. The two parameters Z~ and 
Zb of G were optimized. (Starting from a Coulson-type ground state one- 
configuration approximation [14], Callen [15] determined a G-type orbital in 
quite a similar way.) 

As can be seen from Fig. 1, each of the methods II, III, and IV is superior to 
any of the preceding ones. The M O - L C G D O  result nearly equals the ODC-value 
obtained by Das and Wahl [13]. 

Again the internuclear distance was varied (Table 2). The differences between 
the four calculations and the optimized double configuration result EOD c are 
presented in Fig. 3. 
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Fig, 3. Ground state of H 2. Deviations of double configuration model calculations from optimized 
double configuration SCF results 

E. Appendix: Transformation Properties of Two-Electron Two-Center Integrals 

B e  
Nbase  

z~(r)= ~ CpiZp(r) (i= l(1)Norb) (10) 
p=l  

a linear combination of Kbase basis functions xv(r). For the CI calculation, all 
two-electron integrals [Z~XjJZ~,X~] between these linear combinations are required. 

Instead of transforming the set of two-electron integrals [ZpZq[ZrZ~] into the 
required set, we proceed as follows: 

According to Ruedenberg's ideas [16], all integrals between linear combi- 
nations are decoupled: 

[X~Z~IZ~ZI] = ;Z G~J(#)G'Lk'l(#)d# " (11) 
1 L 
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M t t ,  f r t v Here G~'g(#) = fTL (#,r))~, (r ))~g(r )dV (12) 

may be considered as an integral transform of the mixed density )~*)~ with the 
kernel 7f(#,r') [-11]. The integral transforms G~'J(#) may be regarded as the 
elements of a second order tensor G~(#) (L fixed). It transforms under a change of 
basis (10) described by the matrix C like 

G~ (#) = C + GL(#)C , (13) 

as the component Gff(#) of GL(#) is defined by 
M t , t t r G~'q(#) = ~TL (#,r)Xp(r )xq(r )dV . (14) 

So the transformation of a tensor of fourth order [Xp)~ql;g,)~J may be replaced 
by the transformation (13) of the tensors GL(#) which are only of order two. Only 
the tensors G).(#) must be held in core to perform the integrations (11). 
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